一.Formed curve方法:
1、首先建立缺省的datum plan; 并建立一個(gè)參數(shù)p,用來(lái)控制螺旋圈數(shù)(set up/parameters/create/real parameters ,初始值可以設(shè)為:1)
2、建立圓柱體(或者圓柱曲面),
3、建立form curve,選擇tang plane 為sketching plane,選擇圓柱體的頂面為top,然后繪制如直線:
注意事項(xiàng):a、對(duì)齊直線的兩個(gè)端點(diǎn)(右上端點(diǎn)對(duì)齊圓柱的top面,左下端點(diǎn)對(duì)齊圓柱軸線和tang plane的交點(diǎn))
b、建立coordinate system,并對(duì)齊直線的左下端點(diǎn))
4、建立relation:
sd#=L*P*PI*D
L為圓柱的長(zhǎng)度
P 為參數(shù)(第一步建立的參數(shù))
D 為圓柱的直徑
PI 為π
5、regenerate后你可以看到生成的helical curve了。
二、利用方程式:
1、首先建立缺省的datum plan,coordinate system
2、建立datum curve ,選擇 from equation
3、選擇coordinate system, 圓柱坐標(biāo)(cylindrical)
此時(shí)出現(xiàn)下列信息:
/* For cylindrical coordinate system, enter parametric equation
/* in terms of t (which will vary from 0 to 1) for r, theta and z
/* For example: for a circle in x-y plane, centered at origin
/* and radius = 4, the parametric equations will be:
/* r = 4
/* theta = t * 360
/* z = 0
/*-------------------------------------------------------------------
其中螺旋線的方程式為:
r = minimum radius of helix + t * (major radius of helix - minimum radius of helix)
theta = t * (pitch of helix * 360 * leading angle (if any)
z = desired height + t
在彈出的信息文檔內(nèi)輸入數(shù)值:
4、存盤退出后按ok